Scikit-learn: Machine Learning in Python

نویسندگان

  • Fabian Pedregosa
  • Gaël Varoquaux
  • Alexandre Gramfort
  • Vincent Michel
  • Bertrand Thirion
  • Olivier Grisel
  • Mathieu Blondel
  • Peter Prettenhofer
  • Ron Weiss
  • Vincent Dubourg
  • Jacob VanderPlas
  • Alexandre Passos
  • David Cournapeau
  • Matthieu Brucher
  • Matthieu Perrot
  • Edouard Duchesnay
چکیده

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.org.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn is an open-source python toolbox aiming at providing a wide range of methods to cope with the problem of imbalanced dataset frequently encountered in machine learning and pattern recognition. The implemented state-of-the-art methods can be categorized into 4 groups: (i) under-sampling, (ii) over-sampling, (iii) combination of overand under-sampling, and (iv) ensemble learning m...

متن کامل

Seglearn: A Python Package for Learning Sequences and Time Series

seglearn is an open-source python package for machine learning time series or sequences using a sliding window segmentation approach. The implementation provides a flexible pipeline for tackling classification, regression, and forecasting problems with multivariate sequence and contextual data. This package is compatible with scikit-learn and is listed under scikit-learn ”Related Projects”. The...

متن کامل

API design for machine learning software: experiences from the scikit-learn project

scikit-learn is an increasingly popular machine learning library. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices for the application programming interface (API) of the project. In particular, we describe the simple and elegant interface shared by all learning and ...

متن کامل

Machine learning for neuroimaging with scikit-learn

Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised lea...

متن کامل

TF.Learn: TensorFlow's High-level Module for Distributed Machine Learning

TF.Learn is a high-level Python module for distributed machine learning inside TensorFlow (Abadi et al., 2015). It provides an easy-to-use Scikit-learn (Pedregosa et al., 2011) style interface to simplify the process of creating, configuring, training, evaluating, and experimenting a machine learning model. TF.Learn integrates a wide range of state-ofart machine learning algorithms built on top...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2011